The Centrality of Small Islands in Arctic Norway
From the Viking Age to Recent Historic Period

Stephen Wickler

To cite this article: Stephen Wickler (2016) The Centrality of Small Islands in Arctic Norway
From the Viking Age to Recent Historic Period, The Journal of Island and Coastal Archaeology,
11:2, 171-194, DOI: 10.1080/15564894.2015.1134728

To link to this article: http://dx.doi.org/10.1080/15564894.2015.1134728

Published online: 26 Jan 2016.

Submit your article to this journal

Article views: 99

View related articles

View Crossmark data

Citing articles: 1 View citing articles
The Centrality of Small Islands in Arctic Norway From the Viking Age to Recent Historic Period

Stephen Wickler

Department of Cultural Sciences, Tromsø University Museum, University of Tromsø, Tromsø, Norway

ABSTRACT

The definition of island marginality in northern Norway was radically altered by the advent of motorized fishing vessels in the early twentieth century. Prior to this development, small offshore islands were of central importance for marine related activity due to their proximity to fishing grounds. This article presents four settlements on small and “marginal” islands in Arctic Norway from 68° 19’ to 71° 05’ N latitude as cases that illustrate the centrality of such locations in a maritime context since the Viking Age (AD 800–1050). Although the islands are situated in exposed locations that appear inhospitable and barren, they were the focus of fishing activity spanning nearly a millennium from the medieval period (AD 1050–1540) through the nineteenth century. Settlement mounds are a distinctive northern Norwegian coastal site type where favorable conditions have resulted in the accumulation of substantial cultural deposits from long-term use and occupation of specific locations. Results of recent mound site excavations from each of the four island settlements are reviewed in relation to the insights they provide into small island contexts linked to larger networks of maritime interaction.

Keywords fishing settlement, medieval period, northern Norway, settlement mounds, small island archaeology

Life in northern Norway has been dependent on the sea and marine resources since initial settlement following the retreating ice at least 11,500 years ago. Small islands have played a significant role for maritime communities since the Mesolithic when occupation of offshore islands reflected the maritime orientation of hunter-gatherer settlement (Bjerck 2009, 2014). Although settlement along the coast, including coastal
islands, in northern Norway has been the subject of extensive archaeological interest, I would argue that archaeologists have undercommunicated the importance of small islands as central nodes in coastal communication, contact, and exchange binding the inhabitants of northern Norway to one another since the Stone Age. This is paralleled by the contemporary situation in which small islands that were formerly socio-economic midpoints have been transformed into depopulated remote entities on the margins of society over the past century.

The subject of fishing settlement in northern Norway, in which small islands play a key role, has been a topic of debate over many years with alternative explanatory models presented by archaeologists. A fundamental issue being debated is the degree to which fishing was dependent upon agriculture as a prerequisite for the existence and growth of fishing settlements where access to grain was of central importance. Some scholars contend that permanent settlement in areas lacking agricultural potential was not feasible until stable access to imported grain was established by the Hanseatic merchants beginning in the thirteenth century (Nedkvitne 1983; Nielssen 1993). On the other hand, there is also a long tradition supporting an alternative model in which the central importance of fishing for settlement since the Stone Age is emphasized (Gjessing 1941) and maritime resources viewed as both essential and sufficient for settlement (Bertelsen 2011). Even in the region of northern Norway to the south of the limit for grain production in the vicinity of Tromsø, the focus has been on a mixed fisher-farmer ($fiskerbonde$) economy where agriculture is secondary to marine resources. The romantic icon of the small farmer in the Norwegian nationalistic narrative has also contributed to a neglect of coastal maritime culture ($kystkultur$) (Hundstad 2014).

The expanding interest in the archaeology of islands and the sea (Barrett 2012; Boomert and Bright 2007; Fitzpatrick 2004; Rainbird 2007; Van de Noort 2011) has led to a fruitful ongoing dialogue addressing issues surrounding “islandscapes” and “seascapes” such as isolation and connectedness, insularity and the fluidity of boundaries, and networks of maritime interaction. As Rainbird (2007:163–70) has convincingly argued, by turning our attention from an archaeology of islands towards an archaeology of the sea, we free ourselves from the confines of islands as bounded entities to embrace connectivity between maritime communities in which islands are an essential component. Scholars of the Norwegian past have yet to articulate an archaeology of the sea or islands, due in part to the fact that the abundance of islands and importance of the sea are taken for granted. Fostering maritime perspectives is also hindered by the continuing tendency to view the sea and its islands differently from the (main)land.

My objective in this article is to present specific cases that contribute to documenting the assertion that diminutive islands in northern Norway were neither isolated nor detached from society, but functioned as essential nodes in networks of maritime interaction in a sea of islands at the intraregional, interregional, and transnational level. While I do not intend to argue that small islands have a more privileged role relative to larger islands, they do have the potential to reveal more direct linkages to fishing and marine resources in general. Connections to small islands were also central components in the web of relationships between outward-looking, dynamic maritime communities exposed to impulses and influences from the burgeoning urban centers of Europe during the period being addressed here. The maritime communities of northern Norway also possessed a highly developed nautical technology within the Nordic clinker boat and ship-building tradition coupled with seamanship skills developed since the Early Iron Age in which the sea was viewed as a highway rather than a barrier (Wickler 2004).

The following section provides a short overview of the history of settlement mound archaeology in northern Norway. Settlement mounds are a distinctive northern Norwegian coastal site type that provide the principal source of documentation for the four small island case studies I will be examining. The presence of substantial well-preserved...
cultural deposits in mound sites representing continuous activity over long periods is a valuable asset in mapping the history of maritime use and settlement at each of the settlement locations. Following the settlement mound overview, excavation results from each case location are reviewed and assessed as distinctive site histories illustrating the diversity of maritime activity found on small islands.

SETTLEMENT MOUND ARCHAEOLOGY

The accumulation of domestic refuse, turf and other structural remains, dung from domestic livestock, and other material associated with long-term use and occupation of specific locations has resulted in the formation of a site type commonly referred to as a “farm mound” (gårdshaug) in the archaeological literature. The combination of turf as the dominant construction material, a cold climate conducive to slow decomposition, and topography that offers few alternatives for settlement locations have all contributed to an abundance of settlement mounds along the coast of northern Norway. Although a total of approximately 900 settlement mound sites are recorded in the national site register (Figure 1), it is estimated that 1,500–2,000 mounds exist in northern Norway (see “farm mound” overviews by Bertelsen and Lamb 1993; Urbaniczky 1992:105–120). Settlement mound sites vary significantly in size with cultural deposits up to seven meters in thickness and dimensions of several hundred meters, although mounds with an area of 2000–3000 m² and 1–2 m thick deposits are more common (Bertelsen 1979:3) and many are significantly smaller. The main period of mound formation extends from the eleventh century through to the recent historic period and occupied structures are still common on mound sites. Although some mounds have been dated to the Early Iron Age (Jørgensen 1984), these are distinct from the later sites that will be addressed here.

It was not until the 1950s that settlement mounds were formally recognized as an archaeological feature (Simonsen 1954) and the first modern mound excavation was undertaken in the 1960s (Munch 1966). The Helgøy Project (1975–1980), which conducted multidisciplinary research focusing on “eco-ethno” processes since AD 1 within a region of northern Troms comprised of seven large islands, was a milestone for settlement mound documentation. Sixteen mounds, most less than 2,000 m², were recorded and excavation undertaken in all but one including 27 test units, most less than 2.5 m², but also three larger area excavations up to 4 × 4 m. Although an overview of the excavation results, including basal radiocarbon dates from 13 mounds, is presented by Holm-Olsen (1981), and Bratrein (1989) provides additional site information, a detailed report of the mound excavations has yet to be published. The mound sites are interpreted as representing settlement initiated around AD 1350 with a gradual increase in number until the seventeenth century. Only two of the mounds are located on small offshore islands, and these remain undated.

The Helgøy Project was also noteworthy for its aim to “develop methods for distinguishing Sami from Norwegian settlements” in a multiethnic settlement area (Mathiesen et al. 1981:81). It was argued that a new group of people moved into the Helgøy region around AD 1300 and that these new settlements are represented by the “Norwegian” settlement mounds. In contrast, turf house remains interpreted as traditional Sami dwellings (gamme) are found in different locations suggesting settlement by two separate ethnic groups in distinct ecological zones (Søbstad 1981). The project results further suggested that the two groups coexisted as separate entities for some 500 years until external forces forced the Sami to emigrate or assimilate in the eighteenth and nineteenth centuries. More recent research has rejected the model of rigid territorial boundaries between Sami and Norse settlement areas during the medieval period and later pre-modern era (Hansen and Olsen 2014).

Early mound investigations focused on larger sites associated with farmsteads and a review of farm mound research by Bertelsen (1979) linked mounds with agricultural activity and medieval farms. In a later review, Bertelsen continued to use the term
“farm mound,” although farm is defined as including “a permanent coastal settlement where the main economic activities are livestock breeding, fishing and seal hunting” (Bertelsen and Lamb 1993:545). However, more recent articles advocate use of the term “settlement mound” since mounds reflect a variety of settlement types in addition to farms (Bertelsen 2011; Mook and Bertelsen 2007). The focus on associating farming with mound formation reflects the general emphasis on agricultural settlement mentioned earlier that underplays the importance of maritime-based coastal and island settlement and masks the inherent variability between settlement mound sites.

By the beginning of the 1990s, about a dozen more substantial settlement mound excavations had taken place, although none of these covered more than a small area of each mound. About 30 small-scale excavations had also been carried out and data existed on the character of deposits from more than 50 mounds (Bertelsen and Lamb 1993:544–545; Simonsen 2002). Andreassen and Bratrein (2011) undertook a research
project that documented “farm mounds” associated with specialized fishing villages *(fiskevær)* in western Finnmark in the 1980s and 1990s. Basal radiocarbon dates from their limited test pit excavations in nine of the 15 investigated mound sites document initial mound formation from the thirteenth to fifteenth centuries equated with the advent of extensive Norwegian fishing settlement along the outer coast. As with the Helgøy Project, nearly all of the documented mound sites are on larger islands.

From 1990 to 2010, an estimated 37 settlement mound investigations involving monitoring and excavation were undertaken within a heritage management framework. Only one of these, a 56 m² excavation of cultural deposits up to 1.5 m thick in a 119 × 80 m settlement mound at Bergsodden in Harstad in 2009 (Olsen 2012), can be characterized as extensive. At least 10 structures were documented at Bergsodden and 150 liters of bone midden analyzed from cultural deposits extending from the late thirteenth century through to the recent historic period. The remains of a Bronze Age cooking pit and stray finds from the Stone Age document pre-medieval activity underlying the mound. A notable increase in the number of settlement mound investigations related to heritage management has occurred since 2010, with nine in 2011 alone, but nearly all have been restricted to monitoring of mechanized digging activity providing limited new knowledge of mound histories.

Although settlement mounds have been predominantly interpreted, both explicitly and implicitly, as reflecting Norse activity, Sami mound sites have also been documented. Andersen (1992) has claimed that the development of coastal Sami farmsteads in the Ofoten region of Nordland can be traced through the formation of settlement mounds. Mound formation commences in the High Middle Ages in outer Ofoten but mound sites originating in the Late Middle Ages are concentrated in the inner fjord areas. The development of mound sites is attributed to a stabilization of settlement due to increased emphasis on agriculture, livestock breeding, and fishing in addition to trade access (Andersen 1992:158–161).

The presence of both Sami and multiethnic mound sites in northern Norway is to be expected, but the question of how ethnic identity is expressed through material culture remains highly problematic. For example, traditional Sami antler spoons are widespread in medieval and post-reformation settlement mound deposits with at least 15 spoons identified from dated contexts, but these artifacts were commonly used by both Sami and Norse groups (Skandfer 1996). The distribution of antler spoons does suggest an established coexistence between the two ethnic groups up until about AD 1700 when their use declines significantly (Skandfer 1996:106).

Maritime Mound Histories

The establishment of a significant number of mound sites can be associated with intensification of fishing activity, particularly the winter cod fishery, focused on the production of dried cod (stockfish) that was controlled by chieftains within a redistributive economy during the Viking Age (Perdikaris and McGovern 2009; Wickler 2013). However, the scope and capacity for long-distance transport of fish products such as stockfish was limited during this period given the restricted nature of existing exchange networks and inadequate production of larger merchant vessels (Nedkvitne 1985). The dramatic social transformation that accompanied the introduction of Christianity and control of resources by the crown in the early medieval period is reflected in fishery production. The commercialization of cod fisheries that took place in the thirteenth century was spurred by European urbanization and the demand for stockfish generated by Catholic Lenten fare requirements (Nielsen 2014; Urbańczyk 1992). The rise of the Hansa and control of trade by the German Hanseatic merchants based in Bergen by the fourteenth century also had a dramatic impact on stockfish export and, indirectly, settlement mound site development.

Coastal and offshore island settlement mound sites are commonly associated with fishing activity combined with a limited amount of livestock breeding to supply
meat, wool, and dairy products. Mound sites are also a hallmark of fishing settlement (fiskevær) expansion northward on islands along the outer coast of northern Norway representing Norse colonization of Sami settlement areas in northern Troms and Finnmark. In order to illustrate the significance and diversity of maritime-oriented mound sites in northern Norway, four “small island” settlement mound histories will be presented in a geographical sequence from south to north (Figure 2; Table 1).

This northward progression reflects an attendant diminished importance in the role of agriculture and livestock breeding relative to fishing activity. Starting with the island of Borgvær in the core Norse settlement region of the Lofoten Islands, we travel northward to a small fisher-farmer settlement on Halvardsøy along the outer coast of Senja in central Troms and a seasonal fishing base on Grimsholmen in northern Troms. The final stop is a long-term marine exploitation site at Finnes on Ingøy in western Finnmark, close to Norway’s northernmost point.

BORGVÆR: A MILLENNIUM OF FISHING SETTLEMENT IN THE LOFOTEN ISLANDS

Borgvær is a small, low-lying island located 2.5 km from the outer shoreline of the large island Vestvågøya and c. 8.5 km from the Iron Age chieftain center at Borg (Munch et al. 2003) in the Lofoten Islands. Borgvær was owned by the Church through the ecclesiastical leader at Borg and fishing from Borgvær provided a source of income for the parish priest at Borg during the High Middle Ages (AD 1200–1400) (Nielssen 1977, 2009). A similar relationship to the Borg chieftain was probable in the Viking Age (Nielssen 2009:1, 2011:293). Borgvær was already a significant fishing base in the Late Iron Age due to its attractive position in close proximity to fishing grounds that provided an abundant and stable source of fish throughout the year. The potential of Borgvær as a model for long-term occupation predicated on marine resources was explored through excavation of house remains, a settlement mound, and a late historic fishing station site (Figure 3). As the results of this project have been recently published in detail (Wickler and Narmo 2014), the presentation here will be limited to a general overview.

Fishing-related house structures revealed initial temporary and intermittent occupation during the Merovingian Period (cal AD 670–715) with expanded use by the early Viking Age (cal AD 770–880) and probable permanent occupation later in the Viking Age. The location of structures was maintained for many centuries due to optimal placement in the maritime landscape with convenient access to a sheltered natural harbor and advantageous boat landing locations. Initial occupation of the settlement mound took place during the transition from the Iron Age to medieval period and was followed by continuous permanent settlement up until the middle of the fifteenth century. Occupation was reestablished in the sixteenth century and continued into the seventeenth century. Settlement mound development can be linked to intensified fishing activity and commercialization of winter cod fishing in the twelfth century. Intensive fishing activity in the recent historic period is reflected by the occupation of multiple site locations with the establishment of a trading station and large fishing station (fiskevær) settlement in the late 1700s.

Settlement on Borgvær sheds light on the origins and development of the commercialized North Atlantic cod trade in Lofoten. A widespread trade in dried cod had developed by the twelfth century, accounting for ca. 80 percent of Norwegian exports in the High Middle Ages (Nedkvitne 1976). Lofoten has long been a center for stockfish production, which played a decisive role in the growth of large fishing stations and villages (Nielssen 2011). Parallels to the fishing-related settlement structures at Borgvær appear elsewhere in Lofoten such as Nusfjord in Flakstad where similar structures have been dated from the Migration Period to Viking Age.

Borgvær reflects the origins and development of settlement mound occupation in the core Norse region of Lofoten that can be
Figure 2. Map showing archaeological site locations mentioned in the text (drafted by J. Arntzen).

Table 1. Overview of excavated sites.

<table>
<thead>
<tr>
<th>Site location</th>
<th>Island size (km²)</th>
<th>Site dimensions (m²)</th>
<th>Excavated area (m²)</th>
<th>Deposit thickness (m)</th>
<th>Site chronology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Borgvær mound</td>
<td>1.8</td>
<td>70 × 40 (2800)</td>
<td>1</td>
<td>2</td>
<td>AD 1000–1600</td>
</tr>
<tr>
<td>Halvardsøy mound</td>
<td>0.6</td>
<td>23 × 18 (414)</td>
<td>1</td>
<td>1</td>
<td>AD 1400–1900</td>
</tr>
<tr>
<td>Grimsholmen mound</td>
<td>1.6</td>
<td>75 × 60 (4500)</td>
<td>3</td>
<td>1</td>
<td>AD 1200–1900</td>
</tr>
<tr>
<td>Finnes, Ingøy</td>
<td>18.6</td>
<td>50 × 35 (1750)</td>
<td>5</td>
<td>1 (truncated)</td>
<td>400–200 BC (phase 1) AD 1200–1400 (phase 2)</td>
</tr>
</tbody>
</table>
linked directly to stockfish production and trade (Wickler and Narmo 2014). The settlement mound histories that follow reflect varied expressions of small island use and occupation within the maritime sphere. They also include locations where Norse colonization took place within traditional Sami areas during the medieval period.

HALVARDSØY: A SMALL FISHER-FARMER SETTLEMENT IN CENTRAL TROMS

Halvardsøy is one of numerous small islands scattered along the outer coastline of Senja, Norway’s second largest island, and lies in Selfjord ca. 2.5 km from the coast of southwestern Senja. A number of these islands had large fishing stations in the 1800s due to their advantageous proximity to fishing grounds. When the introduction of motorized fishing vessels in the early 1900s eliminated the need to row out to fish, the islands were rapidly depopulated and houses moved to Senja, thus transforming former focal points of maritime activity into abandoned landscapes on the social periphery. Two families lived on the island in 1666 and it was a summer fishing station (*rorvær*) in the late 1800s also used to a more limited extent in the winter season.

As part of an archaeological survey of small islands along the outer coast of Senja (Troms fylkeskommune 2010, 2011), a test excavation was conducted in a previously undocumented small settlement mound at a farmstead documented in the 1600s on Halvardsøy (Wickler 2011). A 1.3×0.7 m excavation unit placed near the mound margin (Figure 4) revealed a 1 m thick cultural deposit with a basal radiocarbon date of cal AD 1390–1430 at two sigma (540 ± 26 BP, Wk-32841). Occupation evidence extended up until the late 1800s with multiple con-
Figure 4. View of the Halvardsøy settlement mound looking east with excavation location indicated (photo by S. Wickler).

Figure 5. Test unit profile from Halvardsøy (drafted by S. Wickler and A. Icagic).
struction phases, including a wooden plank house floor with flagstones and hearth intersected by an overlying stone wall (Figure 5). A dense concentration of bone midden consisting almost exclusively of fish mixed with a limited quantity of cattle and sheep/goat was present above the house floor. The volume of fishbone in one 15 cm thick level exceeded 12 liters. The artifact assemblage consisted of common domestic items including ceramics, boat nails, strike-a-light flints, clay pipe fragments, a bone-handled knife, iron implements, and a whetstone.

The excavation results suggest that the settlement mound was associated with a small-scale fisher-farmer farmstead focused on fishing with a limited amount of livestock. The basal mound date coincides with Norse fishing-related colonization of islands along the outer coast of Troms and Finmark. Given the absence of evidence for earlier archaeological sites, the mound may represent initial permanent settlement on the island. This is the only excavated site from the islands along the outer coast of Senja and the overall island settlement chronology remains poorly documented.

GRIMSHOLMEN: 700 YEARS OF SEASONAL FISHING IN NORTHERN TROMS

Grimsholmen is a small, windswept, offshore island facing the open ocean with difficult landing conditions generally restricting use to the more hospitable summer season. It lies 3.5 km north of Burøy Island and 5 km east of the northern end of the large island Vannøya and requires two hours of rowing to reach in favorable conditions. A settlement mound is located near the southern end of the island (Figure 6). It lies directly above the most dependable landing location on a narrow isthmus with a shoreline that is lower lying and more protected than the surrounding rugged landscape.

Grimsholmen was located in a coastal Sami settlement area not far from the northern boundary for Norse settlement in the medieval period (Bratrein 1989:216). Written sources from 1610 and onward provide insights into life on the island which was used as a fishing station (rorvær) by visiting fishermen from a widespread area during the spring and summer fishing season (Bratrein 2014). An extensive summer trade with Pomor merchants from the White Sea region took place from 1841 until the Russian revolution in 1918 in which flour, grain, rope, and other goods were traded for fresh fish that was salted and brought back to Russia. Two families of smallholders settled permanently on the island from 1846 to 1919 where they lived by fishing and raising a few sheep and goats. Use of the island as a seasonal fishing base ended around 1910 with the advent of motorized fishing vessels.

The remains of at least 27 turf structures, predominantly from the final phase of occupation in late 1800s, are visible on the surface of the site. The settlement mound was first investigated archaeologically by historian Håvard Bratrein (1985) who excavated a 1 × .9 m test unit adjacent to a cabin at the center of the mound (Figure 7). Cultural deposits extended to a depth of 1 m with a basal radiocarbon date of cal AD 1260–1400 at 2σ (Table 2). The mound stratigraphy was interpreted as an accumulation of remains from turf huts (rorbugammer) with a limited amount of domestic refuse and wooden floor at a depth of 50 cm.

Additional excavation was undertaken by Tromsø University Museum in 2014 as mitigation for planned expansion of the cabin on the mound (Lind 2012). A 1 m² unit excavated next to the cabin revealed a stratigraphic sequence similar to Bratrein’s unit. The meter-thick cultural deposits have basal dates from the late thirteenth to early fourteenth century with occupation continuing up until the late 1800s when the settlement mound reached its largest areal extent. A series of eight radiocarbon dates record occupation up until the seventeenth century below a depth of 30 cm. A wooden floor with associated hearth dating to the late fifteenth century was documented at a depth of 40–50 cm and a second wooden floor from the fourteenth century at 80 cm. A foundation wall with rocks up to 35 cm in diameter had been constructed between
Figure 6. Overview of the settlement mound site on Grimsbolmen looking south (photo by S. Wickler).

Figure 7. Plan view drawing of the Grimsbolmen excavation area (drafted by S. Wickler and R. Mikalsen).
Table 2. Radiocarbon dates from Grimsholmen and Finnes.

<table>
<thead>
<tr>
<th>Location and context</th>
<th>Lab. no.</th>
<th>Sample size (gm)</th>
<th>Material*</th>
<th>Conventional age (BP)</th>
<th>13C/12C ratio</th>
<th>Calibrated 14C age (AD unless noted) ($1\sigma / 2\sigma$)**</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grimsholmen mound site</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1985 unit</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c. 100 cmbs</td>
<td>T-6447</td>
<td>—</td>
<td>Charcoal</td>
<td>670 ± 50</td>
<td>—</td>
<td>1280–1320/1260–1400</td>
</tr>
<tr>
<td>1 m² unit</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30–40 cmbs</td>
<td>Beta-395853</td>
<td>0.6</td>
<td>Birch (bark)</td>
<td>300 ± 30</td>
<td>−28.2</td>
<td>1520–1580/1490–1600</td>
</tr>
<tr>
<td>40–50 cmbs</td>
<td>Beta-395854</td>
<td>0.9</td>
<td>Birch (bark/twig)</td>
<td>320 ± 30</td>
<td>−29.5</td>
<td>1520–1590/1480–1650</td>
</tr>
<tr>
<td>45 cmbs</td>
<td>Beta-395855</td>
<td>0.9</td>
<td>Birch (bark/twig)</td>
<td>350 ± 30</td>
<td>−28.2</td>
<td>1570–1630/1540–1640</td>
</tr>
<tr>
<td>50–60 cmbs</td>
<td>Beta-395856</td>
<td>0.6</td>
<td>Birch (bark/twig)</td>
<td>300 ± 30</td>
<td>−27.2</td>
<td>1520–1580/1490–1600</td>
</tr>
<tr>
<td>60–70 cmbs</td>
<td>Beta-395857</td>
<td>0.3</td>
<td>Birch (twig)</td>
<td>560 ± 30</td>
<td>−26.6</td>
<td>1320–1350/1310–1360</td>
</tr>
<tr>
<td>70–80 cmbs</td>
<td>Beta-395858</td>
<td>0.9</td>
<td>Birch (twig)</td>
<td>660 ± 30</td>
<td>−27.0</td>
<td>1290–1310/1280–1320</td>
</tr>
<tr>
<td>80–90 cmbs</td>
<td>Beta-395859</td>
<td>1.3</td>
<td>Birch (unburnt bark)</td>
<td>580 ± 30</td>
<td>−30.8</td>
<td>1320–1350/1300–1370</td>
</tr>
<tr>
<td>80–90 cmbs</td>
<td>Beta-407517</td>
<td>0.1</td>
<td>Birch (unburnt twig)</td>
<td>590 ± 30</td>
<td>−28.1</td>
<td>1310–1360/1300–1370</td>
</tr>
<tr>
<td>1 × 2 m trench</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Layer 7 (south profile), 42–50 cmbs</td>
<td>Beta-395860</td>
<td>0.2</td>
<td>Birch (twig)</td>
<td>350 ± 30</td>
<td>−29.0</td>
<td>1570–1630/1540–1640</td>
</tr>
<tr>
<td>Layer 7 (lower wall), 50–60 cmbs</td>
<td>Beta-395861</td>
<td>2.4</td>
<td>Birch</td>
<td>670 ± 30</td>
<td>−26.2</td>
<td>1280–1310/1270–1320</td>
</tr>
<tr>
<td>Layer/Location</td>
<td>Sample ID</td>
<td>Species</td>
<td>Date (cal BC)</td>
<td>Temporal Range</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>-----------</td>
<td>------------------</td>
<td>--------------------</td>
<td>-----------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Layer 7 (below wall), 60–65 cmbs</td>
<td>Beta-395862</td>
<td>Birch (bark/twig)</td>
<td>810 ± 30</td>
<td>1220–1260/1170–1270</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Layer 6/8 interface, 62 cmbs</td>
<td>Beta-395863</td>
<td>Birch</td>
<td>1150 ± 30</td>
<td>920–970/780–970</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Finnes site

Excavation trench

<table>
<thead>
<tr>
<th>Layer/Location</th>
<th>Sample ID</th>
<th>Species</th>
<th>Date (cal BC)</th>
<th>Temporal Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer 7, nw corner, 50–55 cmbs</td>
<td>Wk-32845</td>
<td>Heather/birch</td>
<td>2275 ± 30</td>
<td>400–360 BC / 400–350 BC</td>
</tr>
<tr>
<td>Layer 7, below rock wall, c. 55 cmbs</td>
<td>Wk-32843</td>
<td>Birch/birch twigs</td>
<td>2243 ± 29</td>
<td>290–230 BC / 320–210 BC</td>
</tr>
<tr>
<td>lower Layer 7, c. 60 cmbs</td>
<td>Wk-32844</td>
<td>Heather/birch</td>
<td>2237 ± 29</td>
<td>300–230 BC / 320–210 BC</td>
</tr>
<tr>
<td>Layer 6, 95–100 cmbs</td>
<td>Wk-32846</td>
<td>Birch</td>
<td>675 ± 27</td>
<td>1280–1300 / 1270–1320</td>
</tr>
<tr>
<td>Layer 5, sw corner, 40–45 cmbs</td>
<td>Wk-32847</td>
<td>Birch</td>
<td>669 ± 28</td>
<td>1280–1300 / 1280–1320</td>
</tr>
<tr>
<td>Layer 5, sw corner, c. 45 cmbs</td>
<td>Wk-32848</td>
<td>Birch</td>
<td>667 ± 27</td>
<td>1280–1300 / 1280–1320</td>
</tr>
<tr>
<td>Layer 3, c. 35 cmbs</td>
<td>Wk-32842</td>
<td>Birch</td>
<td>616 ± 27</td>
<td>2300–1330 / 1290–1400</td>
</tr>
<tr>
<td>Test unit (.8 x .5 m)</td>
<td>Wk-30431</td>
<td>Birch</td>
<td>802 ± 26</td>
<td>1220–1260 / 1190–1270</td>
</tr>
</tbody>
</table>

*AMS except for 1985 date. Charcoal except Beta-395859 and Beta-407517.

Bronk Ramsey 2009; Reimer et al. 2013. Calibrated with OxCal 4.2.4.
the two floor levels. Sediment samples from each of the test unit strata were collected for micro-morphological and geochemical analysis as part of ongoing research for the “InSituFarms” project focusing on the documentation and monitoring of preservation conditions in selected northern Norwegian “farm mounds”.

A 2 × 1 m trench excavated three meters north of the 1 m² unit documented what is interpreted as the northern margin of the medieval mound. The mound boundary is delineated by a structural wall ca. 30 cm high with rocks up to 35 cm in diameter that extended into the south trench profile (Figure 8). A radiocarbon date of cal AD 1170–1270 from a charcoal concentration at the base of the wall with a soapstone fishing line sinker fragment (Figure 9) suggests initial mound-related occupation by the thirteenth century. A date of cal AD 1270–1320 was obtained from compact peaty turf in the lower wall (Layer 7). A third date of cal AD 1540–1640 from a charcoal concentration in the south face profile adjacent to the upper wall documents early post-medieval occupation. The overlying strata consist of a culturally sterile beach gravel fill (Layer 5), peaty turf with minimal cultural material (Layer 3/4), and loose silty turf with nineteenth-century finds (Layer 1) and fishbone concentrations (Layer 2).

The strata in the trench to the north of the structural wall have minimal cultural material and consist of a lower compact peaty turf in the west (Layer 7) and a massive fill layer with beach gravel and rocks up to 25 cm in diameter (Layer 6 and 5) below the nineteenth-century deposits (Layer 1-3). The upper fill stratum extends above the rock wall and is post-medieval. The culturally sterile basal stratum in the trench (Layer 8) consists of water-rounded rocks representing a

Figure 8. Grimsbolmen excavation trench south and west profiles (drafted by S. Wickler and R. Mikalsen).

Figure 9. Soapstone fishing line sinker from Grimsbolmen (photo by A. Icagic).
raised cobble beach deposit. A small charcoal concentration at the upper interface of this stratum under the fill layer in the northeast corner of the trench produced a Viking Age date of cal AD 780–970. Although lacking associated cultural remains, the date confirms use of the island prior to medieval mound development.

Bone midden in the mound is restricted to the most recent period where there are dense concentrations of fish bone and a majority of the mound deposit consists of turf structural remains mixed with birch bark from roof construction. House foundations had stacked rock walls with multiple rebuilding phases. The artifact assemblage appears to reflect male-oriented activity with strike-a-light flints, fragments of iron objects dominated by boat nails, a soapstone fishing sinker, shoe remains, and offcuts from leather clothing manufacture using tanned hides brought to the island (Figure 10). No domestic objects suggestive of female activities such as bakestones and spindle whorls commonly occurring in settlement mound deposits were recovered. The medieval de-
posit had very few ceramic sherds and only small fragments of textile and glass. In sum, the Grimsholmen settlement mound reflects a restricted range of activities undertaken in connection with seasonal occupation for the specific purpose of fishing maintained over a period of approximately 700 years.

FINNES, INGØY: A MULTIPLE-PHASE MARINE EXPLOITATION SITE IN WESTERN FINNMARK

Ingøy is an island of moderate size located to the northeast of Sørøya, Norway’s fourth largest island and the largest lacking road access to the mainland, along the outermost coast of western Finnmark. The exposed northern coast of Ingøy lies in close proximity to rich fishing grounds and is skirted by numerous small islands and skerries that provide shelter from the open ocean. The Finnes site is located along the northwest coast of Ingøy on the leeward side of a point of land with access to a shallow inlet providing a natural landing place. Finnes is a common place name in northern Norway and translates to Sami (finn) point (nes). Ingøy lies within a core Sami settlement area with minimal Norse presence until the High Middle Ages when fishing settlements spread rapidly along the outer coast.

Although Ingøy does not have the diminutive size of the other islands presented here, the position of Finnes along the extreme outer coast and its focus on marine exploitation resembles the situation for the smaller islands. The site was first recorded in 2010 when unauthorized digging begun in 2008 by an amateur local historian was brought to the attention of an archaeologist. Inspection of finds from the “excavation” indicated that the site had a multiple-phase occupation likely extending back to the Early Metal Period (1800–1 BC). Following a site inspection and damage assessment (Vollan et al. 2010), the Directorate for Cultural Heritage financed a project by Tromsø University Museum in 2011 to document the stratigraphic sequence in the previously excavated area and secure the site from further damage.

The 2011 excavation included a series of .5 m² test units to provide a site profile and document the extent of disturbance, and a 3.6 × 1.3 m trench placed within the floor area of a turf structure from the final phase of occupation, a nineteenth-century fishing station (Figure 11 and Figure 12). Although the earlier unauthorized excavation had removed the uppermost cultural deposits, a majority of the medieval deposit and the earlier occupation strata were largely undisturbed. Deposits containing cultural remains extended to a depth of one meter with two temporally distinct occupation phases (Figure 13).

The site was initially used as a temporary marine hunting and fishing base with multiple episodes of activity in the Early Metal Period from ca. 400 to 200 BC based on three radiocarbon dates (Table 2). This phase is represented by a layer of silty shell sand up to 10 cm thick (Layer 7) that was restricted to the northern portion of the trench. Due to excellent preservation conditions, a number of complete bone fishhooks and a harpoon point as well as unfinished fishhooks and other bone manufacturing waste were recovered from this layer. The finds are strikingly similar to fishing gear from the island of Kjelmøy in Sor-Varanger, eastern Finnmark, that gives its name to the Kjelmøy archaeological phase (900–1 BC) (Olsen 1994). A rich faunal assemblage was also present in this stratum, including well-preserved bones of seals, seabirds, and fish.

There was a hiatus in site use until the medieval period when occupation recommenced with activity during the late thirteenth to early fourteenth century confirmed by three radiocarbon dates with a collective age range of cal AD 1270–1320. An additional radiocarbon date of cal AD 1190–1270 suggests that initial medieval occupation may have taken place up to a century earlier. This date was obtained from the base of the cultural deposit in a .8 × .5 test unit under the wall of the late historic turf structure one meter from the northwest corner of the trench.

There was a continued focus on marine exploitation in the initial medieval phase with abundant bone midden comprised of similar species of seal, bird, and...
fish as those being exploited during the Early Metal Period and an absence of terrestrial fauna. Seal bones are dominated by the common seal (*Phoca vitulina*) with a few bones of gray seal (*Halichoerus grypus*). The most numerous seabird species, in descending order of importance, are the common shag (*Phalacrocorax aristotelis*), kittiwake (*Rissa triactyla*), and northern fulmar (*Fulmaris glacialis*). A majority of the fish bone is from Atlantic cod (*Gadus morhua*), although a significant amount of Atlantic halibut (*Hippoglossus hippoglossus*) and lesser quantities of tusk (*Brosme brosme*) and ling (*Molva molva*) are present.

The basal strata from this phase is a compact silt in the southern half of the trench with charcoal and bone but few artifacts (Layer 6). A substantial fill layer with bone midden and a few artifacts had been deposited above this stratum and extended across the entire trench. The lower fill (Layer 4B) is a mixture of shell fragments mixed with shell sand and small waterworn stones while the upper fill (Layer 4A) consists primarily of complete and broken shells from the northern horse mussel (*Modiolus modiolus*) which is traditionally used for bait and can also be eaten. Concentrations of bone midden were scattered throughout the fill deposit. The remains of a substantial north-south oriented 2.5 × 0.5 m stacked rock foundation wall with bakestone fragments but few other artifacts was situated within the upper fill layer.

A second phase of medieval occupation suggestive of incipient settlement mound development (Layer 3) overlies the fill deposit and has a single radiocarbon date of cal AD 1290–1400. The deposit had been severely truncated by the unauthorized excavation in addition to disturbance from recent historic fishing station activity. This phase is interpreted as representing more intensive occupation with finds such as strike-a-light flint, a soapstone spindle whorl, stone
gaming piece, and bakestone fragments. A double-sided antler (most likely from reindeer) comb with single side plates fitted with bronze rivets was also recovered from this layer (Figure 14). Four similar antler combs from the earlier unauthorized excavation can be attributed to the same occupation phase. These include combs classified as Type D3 and D6 (Wiberg 1977) and Type 13 (Ashby 2011) in existing typologies. Double-sided combs first become common in the thirteenth century and similar combs dating to the fourteenth century have been excavated at Bryggen in Bergen (Gitte Hansen, personal communication). It is most plausible that the Finnes combs were produced in Bergen or elsewhere in southern Norway and imported in exchange for fish.

The bakestone fragments found in the rock wall fill are also imports potentially linked to the stockfish trade. Bakestones are rounded to oval in shape with diameters ranging from 25 to 50 cm used to bake bread over the hearth during the medieval and post-reformation period. The presence of incised grooves on the side where the bread was baked is a distinguishing feature. The Finnes bakestones are made of green schist for which known quarry sites are restricted to three locations; Øye in Sør-Trøndelag, Rennesøy in Rogaland, and Ølve-Hatlestrand in Sunnhordland, the latter representing the largest and most important location with production dating back to c. 1030–1100 (Baug 2015:36).

The final phase of medieval occupation at Finnes may be contemporaneous with the large (180 × 150 m) fishing settlement mound at Inga on the north coast of Ingøy, a straight-line distance of 1.7 km from Finnes. Although the earliest dates from limited test excavation at Inga are from the fifteenth century, the excavators note that initial mound occupation is likely to be older (Andreassen

Figure 12. Site plan drawing from Finnes (drafted by C. Valen).
Figure 13. Excavation trench east profile face at Finnes (drafted by S. Wickler and A. Icagic).

Figure 14. Double-sided antler comb from the fourteenth-century deposit at Finnes (photo by A. Icagic).
and Bratrein 2011:343). Inga was one of the largest fishing settlements (Storvær) in Finnmark by the sixteenth century and there were 102 taxpayers in Inngøy parish out of a total of 438 in Finnmark in 1520 (Andreassen 2003:141-142). The late historic fishing station site at Finnes covers an area of c. 50 × 35 m and is larger than the medieval mound site, which may have been an outlying base linked to the central fishing settlement mound at Inga.

There is a multi-room house site with five to six rooms on the islet of Avløysninga separated from the mound site at Inga by a narrow tidal channel. Although a radiocarbon date of cal AD 1470–1660 was recovered from a presumed hearth, the site chronology remains uncertain (Andreassen and Bratrein 2011:343–344). The remains of two large boathouses and a Sami circular turf house are also located on the islet. Multi-room houses begin to emerge c. 1200 with a main phase up until the mid-fifteenth century. These sites are mainly distributed along the coast of Finnmark and interpreted as hybrid multiethnic entities with Norse, Sami, and Novgorodian/Karelian connections for the purpose of trade, barter, and interaction (Olsen et al. 2011). It is noteworthy that both antler double-sided combs of the type found at Finnes and fragments of green schist bakestones were found in the multi-room house site excavations at Kongshavn and Skonsvika that are part of a multiroom-house site cluster at the northwest tip of the Varanger Peninsula (Henriksen et al. 2011). The presence of antler combs and bakestones in these structures is evaluated as pointing towards a Norse origin.

SMALL ISLANDS AS MULTIFOCAL REFLECTIONS OF MARITIME ACTIVITY

The cases presented in this article help to illustrate the importance and centrality of diminutive islands for maximizing access to marine resources within a maritime cultural sphere where connectedness between maritime communities was a necessity for survival within a physical and conceptual sea of islands. The formation of settlement mounds from the late Viking Age through the medieval period provides us with a valuable resource that significantly enhances the archaeological visibility of fishing and related maritime activity from comparable contexts. As the evidence presented here demonstrates, settlement mounds on even extremely small exposed offshore islands can provide well-preserved continuous records of long-term maritime-oriented activity extending into the recent historic period. The selected examples of small island occupation draw attention to the unique site histories of each location and interisland diversity reflected through specific strategies within a maritime framework. Each island settlement portrays different aspects of life intimately entwined with the sea.

Borgvær reveals how the intensification of cod fishing beginning in the Viking Age followed by medieval cod fishery commercialization and expansion of the stockfish trade can be traced through the archaeological record. The trajectory of fishing settlement on Borgvær is also reflected through shifting site types beginning with temporary use of shelters in the Merovingian Period to more intensive occupation of house structures in the Viking Age and a settlement mound in the medieval period. The final phase represents expanded fishing settlement with a large fishing station.

Halvardsøy provides a vignette of a late medieval small fisher-farmer settlement along the outer coast of central Troms that is characteristic of Norwegian fishing settlement expansion in this region. Grimsholmen reflects a highly specialized seasonal island site in northern Troms focused on fishing during the spring and summer. This stands in contrast to the emphasis on winter cod fishing that is most prevalent for settlements during the period when the island was in use from the thirteenth to twentieth century.

The Finnes site in the far north of western Finnmark has a distinctive history with early marine exploitation during the Early Metal Period followed after a considerable hiatus by medieval settlement retaining a ma-
rine resource focus. Transformation of settlement during the medieval period is also apparent with more intensive use leading to incipient settlement mound formation by the fourteenth century potentially linked to commercialized fishing and the stockfish trade. Increased interaction with other fishing settlement mound sites during this period is also likely.

The cases presented reveal the breadth and potential complexity of settlement mound occupation that highlights the inadequacy of the “farm mound” label still embedded in the archaeological literature. There is also a general gradient in mound site characteristics when moving from south to north along the coast in terms of the importance of agriculture relative to marine resources.

Borgvær exemplifies the core Norse Lofoten region as a center for early medieval intensification of cod fishing and fishery commercialization while Norse fishery colonization of outer coastal islands in central and northern Troms beginning in the thirteenth century took place within an area occupied by the Sami. The fisher-farmer settlement on Halvardsøy and long-term seasonal fishing activity on Grimsholmen in Troms reflect the Norwegian fishing expansion process, although the possibility of Sami involvement in fishing activity, particularly on Grimsholmen, cannot be ruled out.

The establishment of Norwegian fishing communities in the core Sami settlement area along the outer coast of Finnmark took place by the thirteenth century. This fishery colonization movement was motivated in part by political and ecclesiastic ambitions with the establishment of churches going hand in hand with fishing settlements (Lind 2003). The initial occupation phase at the Finnes site from 400 to 200 BC took place during the period when it has been suggested that a Sami ethnic identity was beginning to take form, although this was apparently limited to the northeastern coastal region of Finnmark (Hansen and Olsen 2014:31). Medieval occupation at Finnes took place when Norwegian fishing settlements were being established although the continued emphasis on broadly based marine exploitation and absence of domestic animals combined with

the presence of bakestone fragments in the earliest medieval phase may suggest a mixed ethnic context. The later medieval phase with incipient mound development is more consistent with a Norwegian fishing community identity in which domestic items such as a soapstone spindle whorl, stone gaming piece, antler combs, and bakestone fragments occur.

The cumulative evidence from the four islands presented here illustrates the maritime connectedness of islands in Arctic Norway since the late Viking Age and significance of small islands in these linkages. Although this selection represents a limited sample of potential small island sites, a majority of which have yet to be investigated archaeologically, it does reflect some of the interregional diversity that exists in northern Norway and dramatic changes that maritime communities experienced as a result of fishing settlement expansion driven by commercialization and expanding trade. Excavation results also confirm the importance of settlement mound evidence in tracing long-term maritime interrelationships where even the smallest islands, rather than representing isolated marginal entities, can shed light on far-reaching maritime networks. A key concern for the future of maritime archaeology in northern Norway, and coastal Norway as a whole, is the necessity of viewing both islands and the coastal mainland from the sea. The need for a sea-grounded perspective is accentuated by the increasing detachment from the sea that Norwegian society has experienced over the past century.

ACKNOWLEDGEMENTS

First, and foremost, I wish to acknowledge the major contribution made by Keth Lind, settlement mound specialist and my co-director and collaborator on the Finnes and Grimsholmen excavations. Other participants in the 2011 Finnes excavation included Prof. Hans Peter Blankholm (University of Tromsø) and Christian Roll Valen (Tromsø Museum). I am also indebted to my colleagues from Troms County who led
the Andfjord survey and to the captain and crew of Norwegian Coast Guard vessel KV Heimdal for logistical support. My thanks also to Scott Fitzpatrick for inviting me to participate in the stimulating “Diminutive Realm” SAA session that motivated me to delve more deeply into the importance of small islands in northern Norway. Comments from three anonymous reviewers led to significant improvements in the text.

REFERENCES

192 VOLUME 11 • ISSUE 2 • 2016

